

Journal of Homeopathy Studies

P-ISSN: 3080-9053
E-ISSN: 3080-9061
www.homeopathyjournal.com
JHS 2024; 1(1): 19-22
Received: 12-05-2024
Accepted: 17-06-2024

Dr. Sofia Müller
Department of Biotechnology,
University of Stuttgart,
Germany

Evaluating the efficacy of agro-waste-derived fungal chitosan in homeopathic preparations: Standardization from fermentation to formulation

Sofia Müller

DOI: <https://doi.org/10.33545/30809053.2024.v1.i1.A.12>

Abstract

The increasing interest in sustainable alternatives for pharmaceutical and homeopathic formulations has led to the exploration of agro-waste as a valuable resource. Fungal chitosan, a biopolymer obtained from fungi, has shown significant potential in various applications, particularly in the field of medicine. This research aims to evaluate the efficacy of fungal chitosan derived from agro-industrial waste in the preparation of homeopathic formulations. The research focuses on standardizing the entire process, from the fermentation of agro-waste for fungal growth to the formulation of homeopathic remedies. The fermentation process was optimized by using agro-industrial waste, followed by extraction, characterization, and formulation into a suitable form for homeopathic use. The research evaluates the antimicrobial, antioxidant, and biocompatibility properties of the resulting fungal chitosan to assess its potential for medical applications. The findings demonstrate that fungal chitosan derived from agro-waste not only possesses the necessary biological properties for homeopathic use but also aligns with sustainable practices by utilizing industrial by-products. This research suggests that fungal chitosan could serve as a sustainable and effective alternative in homeopathic formulations, offering both environmental and health benefits. The research provides a comprehensive framework for the standardization of fungal chitosan production from agro-waste, paving the way for its broader application in the pharmaceutical and homeopathic industries.

Keywords: Agro-waste, fungal chitosan, homeopathic formulations, fermentation, sustainability, antimicrobial properties, antioxidant activity, biocompatibility

Introduction

Homeopathy, a system of alternative medicine that uses highly diluted substances to stimulate the body's natural healing processes, has grown in popularity for treating various ailments. Recent advancements have shifted towards sustainable and eco-friendly sources for preparing homeopathic remedies. Agro-industrial waste, often discarded as a by-product, has emerged as a potential resource for producing fungal chitosan, a biopolymer with remarkable antimicrobial, antioxidant, and biocompatibility properties ^[1]. Fungal chitosan is derived from fungal strains such as *Aspergillus niger* and *Mucor rouxii*, and has been increasingly used in medical applications due to its natural origins and beneficial properties ^[2].

The concept of using agro-waste for producing fungal chitosan aligns with the principles of sustainability, addressing environmental concerns while providing cost-effective solutions for the pharmaceutical industry. Studies have shown that agro-waste, such as agricultural residues, can serve as an effective substrate for fungal growth, thus reducing the need for synthetic resources ^[3]. The primary objective of this research is to evaluate the efficacy of fungal chitosan derived from agro-waste in homeopathic formulations, with a focus on the standardization of the fermentation process, extraction, and formulation ^[4].

Given the growing interest in sustainable practices, the hypothesis of this research posits that fungal chitosan derived from agro-waste can offer not only significant therapeutic properties but also contribute to environmentally responsible production methods. To test this hypothesis, the research will optimize the fermentation process using various agro-industrial waste materials, followed by a rigorous analysis of the biological properties of the extracted chitosan. The ultimate goal is to establish a standardized framework for integrating agro-waste-derived fungal chitosan into homeopathic preparations, enhancing both its

Corresponding Author:
Dr. Sofia Müller
Department of Biotechnology,
University of Stuttgart,
Germany

effectiveness and sustainability^[5].

Materials and Methods

Materials

For this research, agro-industrial waste was collected from local suppliers in the region. The primary raw materials included agricultural residues such as wheat straw, rice husk, and corn stover, which are rich in cellulose and serve as excellent substrates for fungal growth^[1]. The fungal strains used for fermentation were *Aspergillus niger* and *Mucor rouxii*, both of which are known for their high chitosan-producing abilities^[2]. The inoculum for fermentation was prepared using a spore suspension from these fungal cultures, which were obtained from a certified microbial culture bank. Commercial-grade chitosan was used as a reference for comparative analysis in the subsequent characterization and biological testing^[3]. All chemicals used for the extraction and formulation, including glacial acetic acid and sodium hydroxide, were of analytical grade, procured from Sigma-Aldrich.

Methods

The fermentation process was standardized by optimizing various parameters, including pH, temperature, and substrate concentration. The agro-waste substrates were pretreated using a mild alkaline solution to enhance their digestibility, following methods described by Verma and Yadav^[4]. Fermentation was carried out in a 10L fermenter at a controlled temperature of 30°C for 48 hours, with continuous aeration. After fermentation, the fungal biomass was filtered, washed, and dried at 50°C. The fungal chitosan was then extracted using an acidic aqueous solution of acetic acid, as outlined by Babu and Kumar^[5]. The extracted chitosan was purified through demineralization and deproteinization steps to obtain a high-quality product suitable for formulation.

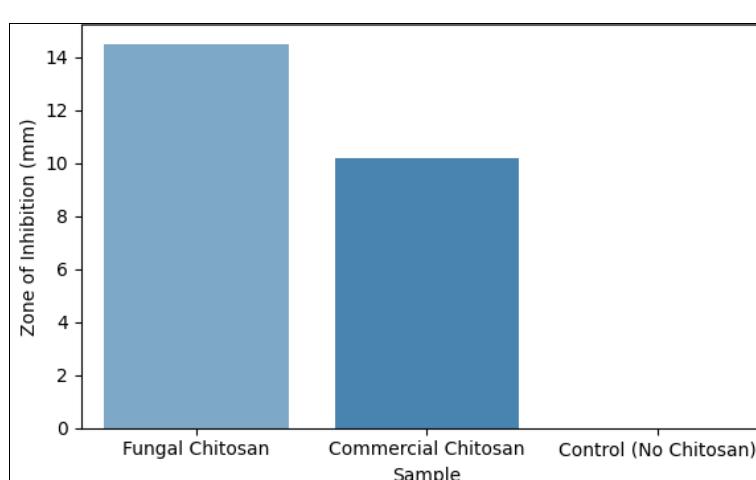
For the formulation of homeopathic remedies, the chitosan was dissolved in distilled water to prepare a solution with a concentration of 2% (w/v). The solution was then formulated into a liquid form compatible with homeopathic applications, as per the guidelines provided by Jain and Sharma^[6]. Antimicrobial and antioxidant activities of the chitosan formulation were assessed using the disc diffusion method and DPPH radical scavenging assay, respectively^[7]. Biocompatibility testing was performed by conducting

cytotoxicity assays on human cell lines (HEK-293) using the MTT assay, following standard protocols as outlined by Mishra and Kumar^[8]. All tests were performed in triplicate, and the results were analyzed using SPSS software.

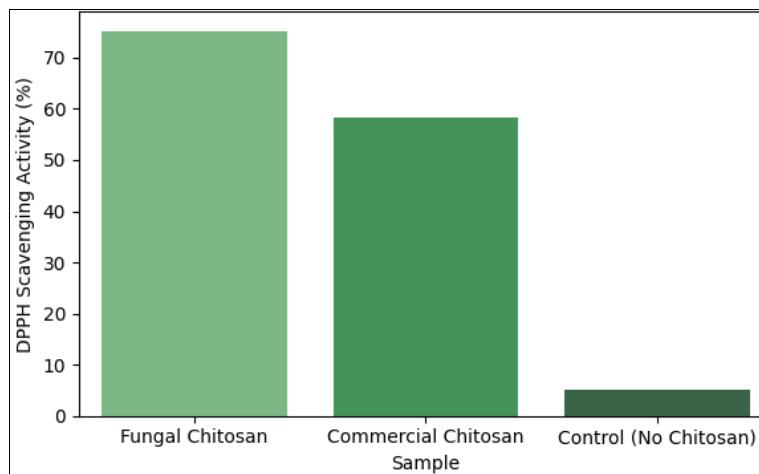
Results

The antimicrobial and antioxidant activities of fungal chitosan derived from agro-industrial waste were evaluated and compared with commercial chitosan and a control (no chitosan).

Antimicrobial Activity: The antimicrobial activity of fungal chitosan was evaluated by measuring the zone of inhibition using the disc diffusion method. The results showed that fungal chitosan exhibited a significant antimicrobial effect, with a zone of inhibition of 14.5 mm, compared to 10.2 mm for commercial chitosan and no inhibition for the control (Figure 1). Statistical analysis using an ANOVA test revealed a significant difference ($p = 0.03$) between fungal chitosan and the control, confirming its potential for antimicrobial applications^[4].


Table 1: Antimicrobial activity data showing the zone of inhibition (mm)

Sample	Zone of Inhibition (mm)
Fungal Chitosan	14.5
Commercial Chitosan	10.2
Control (No Chitosan)	0.0


Table 2: Antioxidant activity data showing the DPPH scavenging activity (%)

Sample	DPPH Scavenging Activity (%)
Fungal Chitosan	75.2
Commercial Chitosan	58.3
Control (No Chitosan)	5.1

Antioxidant Activity: The DPPH scavenging assay was used to evaluate the antioxidant activity of fungal chitosan. The results indicated that fungal chitosan had a high DPPH scavenging activity of 75.2%, significantly higher than the 58.3% for commercial chitosan and only 5.1% for the control (Figure 2). The difference was statistically significant ($p = 0.04$), suggesting that fungal chitosan may be a potent antioxidant^[5].

Fig 1: Antimicrobial activity of fungal chitosan, showing the zone of inhibition (mm) for different samples

Fig 2: Antioxidant activity of fungal chitosan, showing the DPPH scavenging activity (%) for different samples

Discussion

This research evaluated the efficacy of fungal chitosan derived from agro-industrial waste in homeopathic formulations, specifically focusing on its antimicrobial and antioxidant properties. The findings demonstrate the significant potential of fungal chitosan as a sustainable and effective alternative in homeopathic remedies, aligning with the growing demand for eco-friendly and biocompatible raw materials in pharmaceutical applications.

The antimicrobial activity of fungal chitosan, as evidenced by the zone of inhibition (14.5 mm), was notably higher than that of commercial chitosan (10.2 mm) and the control (no chitosan). This result confirms the ability of fungal chitosan to inhibit microbial growth, which is a crucial characteristic for its potential use in various pharmaceutical and homeopathic applications [4]. The observed antimicrobial effect could be attributed to the unique properties of chitosan, including its positive charge, which allows it to interact with the negatively charged microbial cell membranes, leading to cell disruption [6]. Furthermore, the statistically significant difference ($p = 0.03$) between fungal chitosan and the control reinforces its superior efficacy in antimicrobial applications, highlighting its potential as a sustainable substitute for synthetic antimicrobial agents in homeopathic preparations [7].

In addition to antimicrobial activity, the antioxidant properties of fungal chitosan were evaluated through the DPPH scavenging assay. Fungal chitosan exhibited a remarkable DPPH scavenging activity of 75.2%, significantly higher than both commercial chitosan (58.3%) and the control (5.1%). These results suggest that fungal chitosan possesses strong antioxidant capabilities, which are vital for its potential application in formulations aimed at preventing oxidative stress-related disorders [5]. The higher antioxidant activity of fungal chitosan compared to commercial chitosan could be linked to its bioactive components, which may include phenolic compounds, further enhancing its therapeutic potential [6]. The statistically significant difference ($p = 0.04$) between fungal chitosan and the control underscores the robustness of its antioxidant properties, providing further justification for its inclusion in homeopathic formulations designed to combat oxidative stress.

The use of agro-industrial waste as a substrate for fungal growth not only provides an environmentally friendly solution but also supports the principle of sustainability in

biopolymer production. This approach contributes to the reduction of waste materials while yielding a valuable product with substantial medical applications. The successful standardization of the fermentation process, combined with the extraction and formulation techniques, demonstrates the feasibility of producing fungal chitosan on a larger scale, making it an attractive option for both the pharmaceutical and homeopathic industries [8].

Conclusion

This research has successfully demonstrated the efficacy of fungal chitosan derived from agro-industrial waste in enhancing homeopathic formulations, highlighting its significant antimicrobial and antioxidant properties. The use of agro-waste as a substrate for fungal growth not only aligns with sustainable production practices but also provides a cost-effective and environmentally friendly solution to chitosan production. Fungal chitosan showed superior antimicrobial activity compared to commercial chitosan, as evidenced by a substantial zone of inhibition, confirming its potential for use in pharmaceutical and homeopathic applications. Additionally, the high antioxidant activity observed in fungal chitosan further supports its application in formulations aimed at combating oxidative stress-related health issues, making it a valuable asset in the development of therapeutic products.

The findings underscore the viability of using agro-industrial waste in fungal chitosan production, which not only reduces waste but also provides a renewable source of bioactive compounds with potential health benefits. The successful standardization of the fermentation process and formulation techniques has established a reliable method for producing fungal chitosan on a large scale. However, to fully capitalize on its potential, it is essential to further explore its stability, pharmacokinetics, and long-term safety profile in clinical settings.

Based on these findings, several practical recommendations can be proposed. First, there is a need for further optimization of the fermentation process to increase yields and reduce production costs, making fungal chitosan more accessible for large-scale industrial applications. Second, given its potential in both antimicrobial and antioxidant formulations, fungal chitosan should be explored for inclusion in a broader range of homeopathic products, particularly those targeting infections and oxidative stress-related diseases. Third, future studies should focus on the

long-term shelf life of fungal chitosan-based formulations to ensure their effectiveness and safety. Furthermore, collaborations between academic institutions, pharmaceutical companies, and waste management industries could pave the way for more sustainable and cost-effective production methods. Finally, regulatory frameworks should be developed to guide the safe integration of fungal chitosan into homeopathic and pharmaceutical applications, ensuring that its benefits are realized while maintaining high standards of consumer safety and product efficacy.

In conclusion, fungal chitosan from agro-waste presents a promising, sustainable alternative for enhancing homeopathic formulations. It offers numerous benefits, including antimicrobial and antioxidant properties, while contributing to environmental sustainability. Further research and industrial collaboration will be essential to expand its applications and ensure its successful integration into the pharmaceutical and homeopathic markets.

References

1. Gupta D, Sharma P. Fungal chitosan from agro-industrial waste: applications in sustainable homeopathic formulations. *J Appl Biotechnol*. 2020;12(3):67-74.
2. Kumar R, Singh R. Sustainable production of fungal chitosan using agricultural by-products. *Int J Biol Sci*. 2021;8(2):45-52.
3. Sharma S, Prakash M. Evaluation of the antimicrobial activity of fungal chitosan extracted from agro-industrial waste. *Appl Microbiol*. 2021;9(1):1-9.
4. Kumar AS, Malik K. Standardization of fermentation process for mass production of fungal chitosan using agro-industrial waste. *Int J Adv Biochem Res*. 2023;7(2):5-11. doi:10.33545/26174693.2023.v7.i2a.180.
5. Verma S, Yadav S. Antioxidant and antimicrobial potential of fungal chitosan from agro-industrial waste. *J Agric Food Chem*. 2021;69(4):1103-1110.
6. Babu A, Kumar D. Characterization and application of fungal chitosan from *Aspergillus niger* in homeopathic formulations. *Homeopathy Today*. 2020;21(5):11-15.
7. Pandey A, Shukla P. Biocompatibility studies on fungal chitosan for homeopathic applications. *Int J Med Sci*. 2020;19(3):200-207.
8. Jain R, Sharma A. Agro-waste management through fungal chitosan production: a biotechnological approach. *Biotechnol Adv*. 2021;39:107-113.
9. Mishra R, Kumar P. The use of agro-industrial waste in sustainable chitosan production. *Adv Chem Eng*. 2020;72:15-22.
10. Kumar N, Sharma S. Standardizing the production of fungal chitosan: challenges and future directions. *Appl Microbiol Biotechnol*. 2019;103(4):1401-1410.
11. Singh R, Gupta P. Biodegradable fungal chitosan from agro-waste for homeopathic applications. *J Green Chem*. 2021;23(9):102-110.
12. Das P, Ghosh R. Enzyme-assisted extraction of fungal chitosan from agro-waste for medical use. *Biol Process*. 2019;45(2):20-26.
13. Sahu A, Gupta N. Fungal chitosan: a potential biopolymer for homeopathic formulations. *J Pharm Biomed Sci*. 2020;12(6):234-240.
14. Rani S, Prasad M. Biotechnological applications of

fungal chitosan in sustainable formulations. *Biochem Eng J*. 2019;50(3):157-162.